

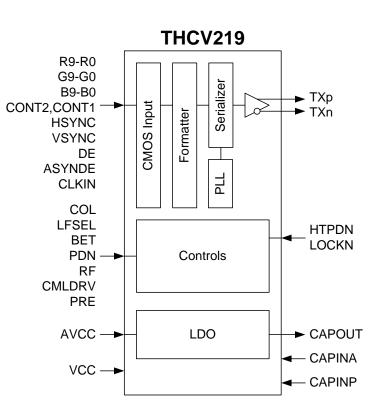
THCV219

V-by-One® HS High-speed video data transmitter

General Description

THCV219 is designed to support video data transmission between the host and display.

One high-speed lane can carry up to 32bit data and 3 bits of synchronizing signals at a pixel clock frequency from 7.5MHz to 75MHz.

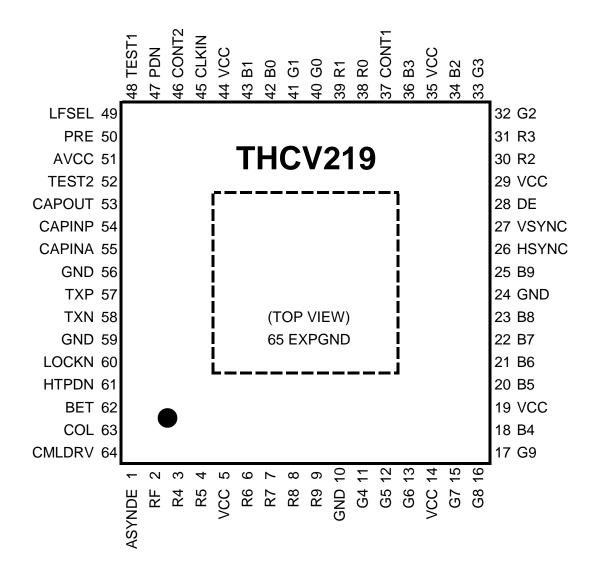

It has one high-speed data lane and, maximum serial data rate is 3.0Gbps/lane.

Width	Link	TTL Clock Freq.		
24bit	Si/So	10MHz to 100MHz		
32bit	Si/So	7.5MHz to 75MHz		
Si/So : Single-in/Single-out,				

Features

- Color depth selectable: 24(8*3)/32(10*3)bit
- Single Link
- AC coupling for high speed lines
- Wide Range Supply Voltage 2.3~3.6V
- Package: 64 pin QFN
- Wide frequency range
- Spread Spectrum Clocking tolerant Up to 30kHz/±0.5% (center spread)
- V-by-One® HS standard Version1.4 compliant
- AEC-Q100 ESD Protection

Block Diagram



Contents Page
General Description1
Features1
Block Diagram 1
Pin Configuration
Pin Description
Functional Description
Absolute Maximum Ratings*
Recommended Operating Conditions
Electrical Specifications
AC Timing Diagrams and Test Circuits
Input Data Mapping15
Package16
Notices and Requests

Pin Configuration

Pin Description

Pin Name	Pin #	type*	Description
R9-R0	9,8,7,6,4, 3,31,30,39,38	13	pixel data inputs
G9-G0	17,16,15,13,12, 11,33,32,41,40	13	pixel data inputs
B9-B0	25,23,22,21,20, 18,36,34,43,42	13	pixel data inputs
CONT1,2	37,46	13	User defined data inputs. Active only in 32bit mode.
DE	28	13	DE input
VSYNC	27	13	Vsync input
HSYNC	26	13	Hsync input
CLKIN	45	13	Pixel clock input
TXN/P	58,57	СО	High-speed CML signal output.
LOCKN	60	I3L	Lock detect input. Must be connected to Rx LOCKN with a $10k\Omega$ pull-up resistor.
HTPDN	61	I3L	Hot plug detect input. Must be connected to Rx HTPDN with a 10k Ω pull-up resistor.
PDN	47	I3L	Power down input. H: Normal operation L: Power down
PRE	50	13	Pre-Emphasis level select input. H : Pre-Emphasis Enable L : Pre-Emphasis Disable
CMLDRV	64	13	CML Outputs drive strength select input. H : Normal drive strength L : Weak drive strength
COL**	63	13	Data width setting. H : 24bit L : 32bit
LFSEL**	49	13	Frequency range setting. H: Low frequency operation L: Normal Operation
ASYNDE	1	13	Asynchronous DE input. H: Normal operation (ASYNDE function disable) L: DE input invert operation (ASYNDE function enable)
RF	2	13	Input clock triggering edge select input for latching input data H: Rising edge L: Falling edge
BET	62	13	Field-BET entry. H : Field BET Operation L : Normal Operation
TEST1	48	-	Test pin, must be "L" for normal operation.
TEST2	52	-	Test pin, must be "L" for normal operation.
CAPOUT	53	-	Decoupling capacitor pins. This pin should be connected to external decoupling capacitors. Recommended Capacitance is 2.2uF
CAPINP	54	-	Reference Input for PLL circuit.Must be tied CAPOUT.
CAPINA	55	-	Reference Input for Analog circuit.Must be tied CAPOUT.
VCC	5,14,19,29, 35,44	PS	Digital Power supply Pins
AVCC	51	PS	Analog Power supply Pin
GND	10,24,56,59	PS	Ground Pins
EXPGND	65	PS	Exposed Pad Ground
L <u></u>			· ·

*type symbol

I3=3.3v CMOS input, I3L=Low Speed 3.3v CMOS input

CO=CML output, PS=Power Supply

**COL, LFSEL pin

COL pin and/or LFSEL pin level shall not be changed during operation. If ether pin level is changed during operation, PDN shall be toggled (H-> L -> H) after the change.

Functional Description

Functional Overview

With V-by-One[®] HS proprietary encoding scheme and CDR (Clock and Data Recovery) architecture, THCV219 enables transmission of 8/10 bit RGB, 2bits of user-defined data (CONT), synchronizing signals HSYNC, VSYNC, and DE by a pair cable with minimal external components.

THCV219 inputs CMOS/TTL data (including video data, CONT, HSYNC, VSYNC, and DE) and serializes video data and synchronizing signals separately, depending on the polarity of DE. DE is a signal which indicates whether video or synchronizing data are active. When DE is high, it serializes video data inputs into differential data streams. And it transmits serialized synchronizing data when DE is low.

THCV219 can operate for a wide range of a serial bit rate from 600Mbps to 3.0Gbps.

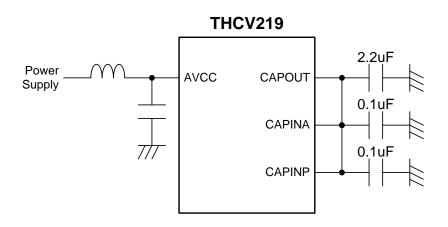
It does not need any external frequency reference, such as a crystal oscillator.

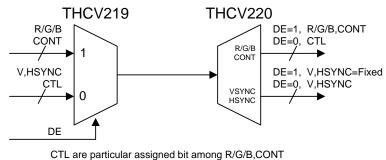
Internal Reference Output/Input Function (CAPOUT, CAPINA, CAPINP)

An internal regulator produces the 1.2V (CAPOUT). This 1.2V linear regulator can not supply any other external loads. Bypass CAPOUT to GND with 2.2uF.

CAPINP supplies reference voltage for internal PLL, and CAPINA supplies reference voltage for any internal analog circuit. Bypass CAPINP/CAPINA to GND with 0.1uF to remove high frequency noise. CAPOUT, CAPINA and CAPINP must be tied together.

Analog power supply AVCC is supposed to be stabilized with de-coupling capacitor and series noise filter (for example, ferrite bead).




Figure 1. Connection of CAPOUT, CAPINA, CAPINP and Decoupling Capacitor

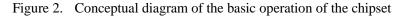

Data Enable

Figure 2 is the conceptual diagram of the basic operation of the chipset.THCV220 in Figure 2 is an example of V-by-One® HS Receiver.

There are some requirements for DE. Figure 3 shows the timing diagram of it.

CTL are particular assigned bit among R/G/B,CONT that can carry arbitrary data during DE=0 period.

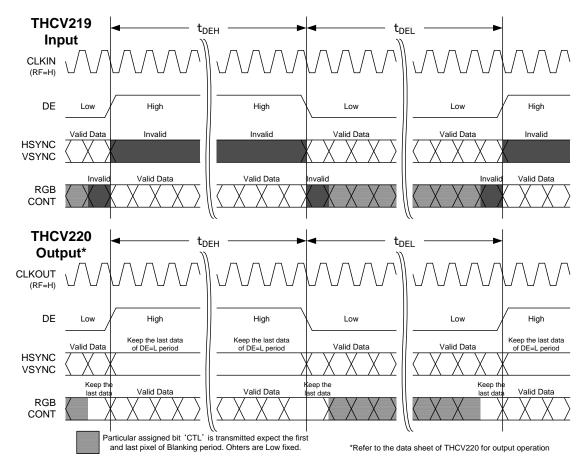


Figure 3. Data and synchronizing signals transmission timing diagram

		•			
symbol	Parameter	min.	typ.	max.	Unit
tDEH	DE=High Duration	2tTCIP			sec
tDEL	DE=Low Duration	2tTCIP			sec

ASYNDE

If ASYNDE input is Low, DE input is inverted before V-by-One® HS processing. RGB/CONT Data is transmitted during DE input=Low. Please be careful this inverted DE is outputted from V-by-One® HS receiver, which may cause polarity mismatch against following system requirement.

Color Depth and Frequency Range Select function

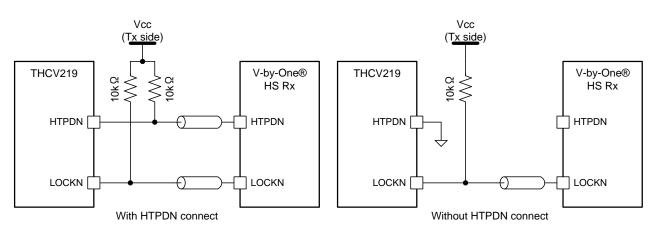
THCV219 supports a variety of data width and frequency range. Refer to Table 2 for details.

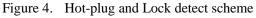
COL pin and/or LFSEL pin level shall not be changed during operation. If ether pin level is changed during operation, PDN shall be toggled (H-> L -> H) after the change.

r r					
COL	LFSEL	Description	Freq. Range		
L	L	32bit	15 to 75M		
	Н	32bit Low frequency mode	7.5 to 30M		
н	L	24bit	20 to 100M		
	Н	24bit Low frequency mode	10 to 40M		

Table 2. operation mode select

Hot-Plug Function


HTPDN indicates connecting condition between the Transmitter and the Receiver. HTPDN of the transmitter side is high when the Receiver is not active or not connected. Then Transmitter can enter into the power down mode. HTPDN is set to Low by the Receiver when Receiver is active and connects to the Transmitter, and then Transmitter must start up and transmit CDR training pattern for link training. HTPDN is open drain output at the receiver side. Pull-up resistor is needed at the transmitter side.


HTPDN connection between the Transmitter and the Receiver can be omitted as an application option. In this case, HTPDN at the Transmitter side should always be taken as Low.

Lock Detect Function

LOCKN indicates whether the CDR PLL is in the lock state or not. LOCKN at the Transmitter input is set to High by pull-up resistor when Receiver is not active or at the CDR PLL training state. LOCKN is set to Low by the Receiver when CDR lock is done. Then the CDR training mode finishes and Transmitter shifts to the normal mode. LOCKN is open drain output at the receiver side. Pull-up resistor is needed at the transmitter side.

When HTPDN is included in an application, the LOCKN signal should only be considered when the HTPDN is pulled low by the Receiver.

Pre-emphasis and Drive Select Function

Pre-emphasis can equalize severe signal degradation caused by long-distance or high-speed transmission. The PRE pin selects the strength of pre-emphasis.

CMLDRV controls CML output swing level. See Table 3.

		Description		
PRE	CMLDRV	Swing level	Pre-emphasis	
L	L	Figure 5. 400mV diff p-p		
	Н	600mV diff p-p	Figure 6. 0dB	
н	L	400mV diff p-p	6dB	
П	Н	600mV diff p-p	3.5dB	

Table 3.	Pre-emphasis and Drive Select function table

Power Down Function

Setting the PDN pin low places THCV219 in the power-down mode. Internal circuitry turns off and the TXP/N outputs turn to High level.

PDN	Description
L	Power Down
Н	Normal Operation

Field BET Operation

In order to help users to check validity of CML high-speed serial line, THCV219 has an operation mode in which they act as a bit error tester (BET). In this mode, THCV219 internally generates test pattern which is then serialized onto the CML high-speed line. THCV220 which is an example or Rx device also has BET function mode. THCV220 receives the data stream and checks bit errors.

This "Field BET" mode is activated by setting BET= H both on THCV219 and THCV220. The generated data pattern is then 8b/10b encoded, scrambled, and serialized onto the CML channel. As for THCV220, the internal test pattern check circuit gets enabled and reports result on a certain pin named BETOUT. The BETOUT pin goes LOW whenever bit errors occur, or it stays HIGH when there is no bit error. Please refer to Table 5.

THCV219	THCV220	Condition
BET	BET	Condition
L	L	Normal Operation
Н	Н	Field BET Operation

Table 5.	Field BET	operation	nin	settings
radic J.	TICIU DE I	operation	pm	settings

	THCV219	THCV220	1
TTL data inputs are ignored ►	/	Γ. 	
	Test Pattern	Test Pattern <u>Checker</u> →	► BETOUT Test Point for Field BET
	BET=H	BET=H	-

Table 6.THCV220 Field BET result

Output

Bit error occurred

No error

BETOUT

L

Н

Figure 7. Field BET Configuration

Absolute Maximum Ratings*

Parameter	min.	typ.	max.	Unit
Supply Voltage(VCC,AVCC)	-0.3	-	+4.0	V
CMOS Input Voltage	-0.3	-	VCC+0.3	V
CML Transmitter Output Voltage	-0.3	-	CAPINA+0.3	V
Output Current	-30	-	30	mA
Storage Temperature	-55	-	+125	°C
Junction Temperature	-	-	+125	°C
Reflow Peak Temperature/Time	-	-	+260/10sec	°C
Maximum Power Dissipation @+25°C	-	-	3.9	W

* "Absolute Maximum Ratings" are those values beyond which the safety of the device can not be guaranteed.

They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Recommended Operating Conditions

Parameter	min.	typ.	max.	Unit
	2.3	2.5	2.7	V
Supply Voltage (VCC,AVCC)	2.6	2.8	3.0	V
	3.0	3.3	3.6	V
Operating Temperature	-40		85	°C

Electrical Specifications

CMOS DC Specifications

		Over recommended o	perating supply and	l temperature range	s unless otherwise	specified.
symbol	Parameter	conditions	min.	typ.	max.	Unit
IIH	Input Leak Current High		-10		+10	uA
IIL	Input Leak Current Low		-10		+10	uA
VCAPOUT	Regulator output Voltage			1.20		V

					VCC	=3.3±0.3V
symbol	Parameter	conditions	min.	typ.	max.	Unit
VIH	High Level Input Voltage	13	2.0		VCC	V
		I3L	2.1		VCC	V
VIL Low Le	Low Lovel Input \/otogo	13	0		0.8	V
	Low Level Input Voltage	131	0		07	V

					VCC	=2.8±0.2V
symbol	Parameter	conditions	min.	typ.	max.	Unit
\/II.1	High Level Input Voltage	13	1.8		VCC	V
VIH		I3L	1.9		VCC	V
VIL Low Level Input		13	0		0.7	V
	Low Level input voltage	131	0		0.6	V

VCC=2.5±0.2V

symbol	Parameter	conditions	min.	typ.	max.	Unit
VIH High Level Input Voltage	High Lovel Input Voltage	13	1.7		VCC	V
	nigh Level input voltage	I3L	1.6		VCC	V
VIL L	Low Level Input Voltage	13	0		0.7	V
		3	0		0.5	V

CML DC Specifications

Over recommended operating supply and temperature ranges unless o						e specified.
symbol	Parameter	conditions	min.	typ.	max.	Unit
VTOD	CML Differential Mode Output Voltage	CMLDRV=L	133	200	267	mV
VIOD		CMLDRV=H	200	300	400	mV
PRE	CML Pre-emphasis Level	PRE=L		0		%
		PRE=H, CMLDRV=L		100		%
		PRE=H, CMLDRV=H		50		%
		PRE=L	1.2 - VTOD			V
VTOC	CML Common Mode Output Voltage	PRE=H, CMLDRV=L	1.2 - 2 * VTOD			V
		PRE=H, CMLDRV=H	1.2 - 1.5 * VTOD			V
ITOH	CML Output Leak Current High	PDN=L, TXP/N=1.2V			±30	uA
ITOS	CML Output Short Circuit Current	PDN=L, TXP/N=0V	-80			mA

Supply Currents

Over recommended operating supply and temperature ranges unless otherwise specified.

symbol	Parameter	conditions	min.	typ.	max.	Unit
пссw	Tronomittor Sumply Current	COL=L			100	
nccw	Transmitter Supply Current	PRE=H			100	mA
πccs	Transmitter Power Down	PDN=L		1.2	10	س ۸
lices	Supply Current	All Inputs =Fixed LorH		1.2	10	mA

Switching Characteristics

		Over recommended	operating supply an	d temperature range	s unless otherwise	specified
symbol	Parameter	conditions	min.	typ.	max.	Unit
tTRF	CML Output Rise and Fall Time(20%-80%)		50		150	ps
		COL=H, LFSEL=L	10		50	ns
tTCI₽	CLKIN Period	COL=H, LFSEL=H	25		100	ns
	CERINFERIO	COL=L, LFSEL=L	13.34		66.66	ns
		COL=L, LFSEL=H	33.34		133.33	ns
tTCH	CLK IN High Time		0.35tTCIP	0.5tTCI₽	0.65tTCIP	ns
tTCL	CLK IN Low Time		0.35tTCIP	0.5tTCI₽	0.65tTCIP	ns
tTS	TTL Data Setup to CLK IN		2.0			ns
tTH	TTL Data Hold to CLK IN		0.6			ns
tTCD	Input Clock to Output Data Delay	COL=H	typ tTCIP	10.6tTCIP+1.7	typ. + tTCIP	ns
liob	Input Clock to Odiput Data Delay	COL=L	typ tTCIP	9.8tTCIP+1.7	typ. + tTCIP	ns
tTPD	Power On to PDN High Delay		0			ns
tTPLL0	PDN High to CML Output Delay				10	ms
tTPLL1	PDN Low to CML Output High Fix Delay				20	ns
tTNP0	LOCKN High to Training Pattern Output Delay				10	ms
tTNP1	LOCKN Low to Data Pattern Output Delay				10	ms

AC Timing Diagrams and Test Circuits

CMOS/TTL Input Switching Characteristics

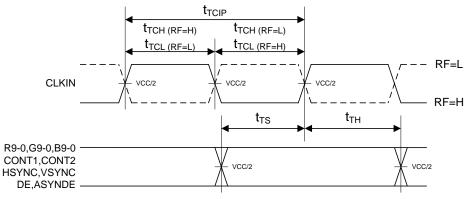


Figure 8. CMOS/TTL Input Switching Timing Diagrams

CML Output Switching Characteristics

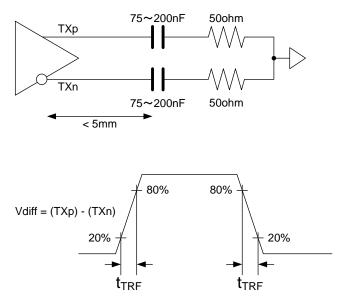


Figure 9. CML buffer Switching Timing Diagrams and Test Circuit

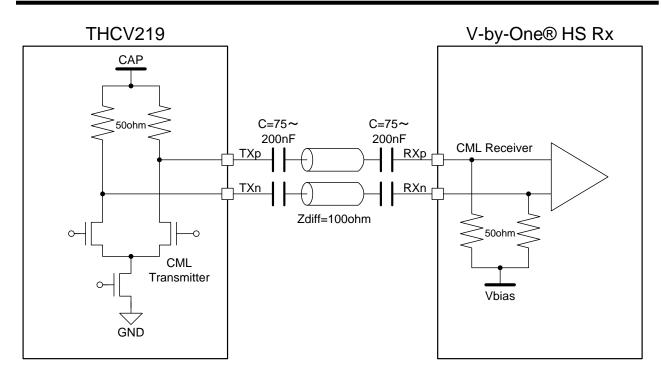


Figure 10. CML buffer scheme

Copyright©2017 THine Electronics, Inc.

Latency Characteristics

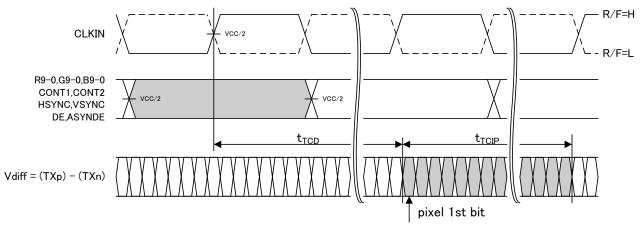


Figure 11. THCV219 Latency

Data output Sequence

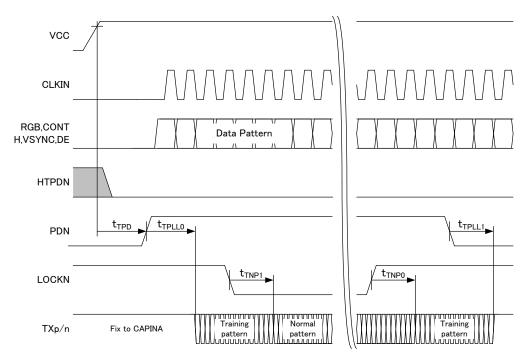


Figure 12. THCV219 Sequence

Input Data Mapping

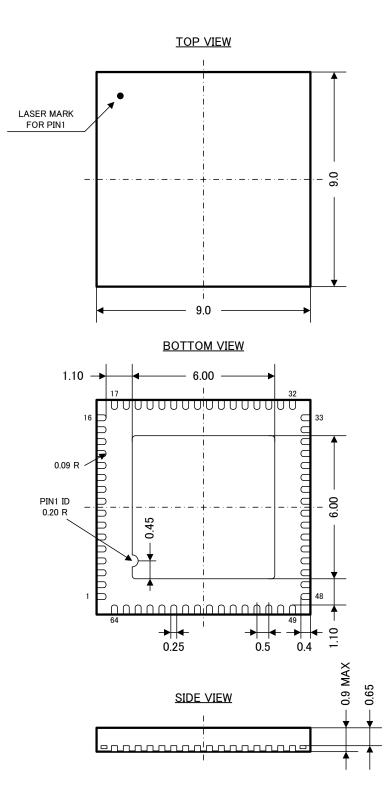

Transmitter					
Data S	ignals	Input P	in Name	Symbol defined	
10bit	8bit	10bit	8bit	by V-by-One® HS	
(30bpp)	(24bpp)	(30bpp)	(24bpp)		
R0 *1	-	R0	-	D30	
R1 *1	-	R1	-	D31	
R2	R0	R2	R2	D0	
R3	R1	R3	R3	D1	
R4	R2	R4	R4	D2	
R5	R3	R5	R5	D3	
R6	R4	R6	R6	D4	
R7	R5	R7	R7	D5	
R8	R6	R8	R8	D6	
R9	R7	R9	R9	D7	
G0 *1	-	G0	-	D28	
G1 *1	-	G1	-	D29	
G2	G0	G2	G2	D8	
G3	G1	G3	G3	D9	
G4	G2	G4	G4	D10	
G5	G3	G5	G5	D11	
G6	G4	G6	G6	D12	
G7	G5	G7	G7	D13	
G8	G6	G8	G8	D14	
G9	G7	G9	G9	D15	
B0 *1	-	B0	-	D26	
B1 *1	-	B1	-	D27	
B2 *1	B0 *1	B2	B2	D16	
B3 *1	B1 *1	B3	B3	D17	
B4 *1	B2 *1	B4	B4	D18	
B5 *1	B3 *1	B5	B5	D19	
B6 *1	B4 *1	B6	B6	D20	
B7 *1	B5 *1	B7	B7	D21	
B8 *1	B6 *1	B8	B8	D22	
B9 *1	B7 *1	B9	B9	D23	
CONT1 *1	-	CONT1	-	D25	
CONT2 *1	-	CONT2	-	D24	
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	
DE	DE	DE	DE	DE	

Table 7. CMOS/TTL Input Data Mapping

*1 CTL bits, which are carried during DE=Low except the 1st and the last pixel.

Package

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. We are not responsible for possible errors and omissions in this material. Please note if errors or omissions should be found in this material, we may not be able to correct them immediately.
- 3. This material contains our copyright, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without our prior permission is prohibited.
- 4. Note that if infringement of any third party's industrial ownership should occur by using this product, we will be exempted from the responsibility unless it directly relates to the production process or functions of the product.
- 5. Product Application

5.1 Application of this product is intended for and limited to the following applications: audio-video device, office automation device, communication device, consumer electronics, smartphone, feature phone, and amusement machine device. This product must not be used for applications that require extremely high-reliability/safety such as aerospace device, traffic device, transportation device, nuclear power control device, combustion chamber device, medical device related to critical care, or any kind of safety device.

5.2 This product is not intended to be used as an automotive part, unless the product is specified as a product conforming to the demands and specifications of ISO/TS16949 ("the Specified Product") in this data sheet. THine Electronics, Inc. ("THine") accepts no liability whatsoever for any product other than the Specified Product for it not conforming to the aforementioned demands and specifications.

5.3 Thine accepts liability for demands and specifications of the Specified Product only to the extent that the user and Thine have been previously and explicitly agreed to each other.

- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. Please note that this product is not designed to be radiation-proof.
- 8. Testing and other quality control techniques are used to this product to the extent THine deems necessary to support warranty for performance of this product. Except where mandated by applicable law or deemed necessary by THine based on the user's request, testing of all functions and performance of the product is not necessarily performed.
- 9. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Control Law.
- 10. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or malfunction, if pins of the product are shorted by such as foreign substance. The damages may cause a smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection devices, such as fuses.

THine Electronics, Inc.

sales@thine.co.jp http://www.thine.co.jp